تعیین و مدلسازی ویژگی‌های رئولوژیکی عصاره کدو تنبل (Cucurbita maxima)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و صنایع غذایی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران

چکیده

جهت ارزیابی پارامترهای رئولوژیکی کنسانترۀ کدوی تَنبَل با غلظت‌های 35، 50 و 65 درجۀ بریکس و دماهای 35، 45 و oC65، از یک ویسکومتر چرخشی استفاده شد. سپس مدل‌های ریاضی مختلف شامل اُسوالد-دی‌اُل (سیال قانون توان)، بینگهام، کاسون پلاستیک، هرشل بالکلی، کاسون اصلاح شده و سیسکو، به منظور تعیین ویژگی‌های جریانی کنسانترۀ کدوی تَنبَل بکار گرفته شد. نتایج نشان داد که کنسانترۀ کدوی تَنبَل در دامنۀ غلظت و دمای به ترتیب 35-65 درجۀ بریکس و 35-oC65 دارای رفتار غیرنیوتنی، رقیق شونده با برش (1>n) است. رابطۀ تنش برشی و آهنگ برشی کنسانترۀ کدوی تَنبَل نشان داد که، فقط مدل کاسون اصلاح شده توانست پارامترهای رئولوژیکی کنسانترۀ کدوی تَنبَل را توصیف نماید. محاسبات ریاضی نشان داد که پارامترهای ضریب قوام و شاخص رفتار جریان کنسانترۀ کدوی تَنبَل به ترتیب وابسته به دما و مستقل از زمان بودند. رابطۀ آرنیوس نشان داد که انرژی فعالسازی (Ea) کنسانترۀ کدوی تَنبَل به دو فاکتور مهم غلظت و گرانروی ظاهری وابسته بوده و در دامنۀ 076/0 تا mol/kJ 34/20 تغییر می‌کند. معادلات توانی و نمایی به طور کافی تأثیر غلظت را روی گرانروی ظاهری کنسانترۀ کدوی تَنبَل بیان نمودند. با این حال، رابطۀ نمایی برازش بهتری در توصیف رفتار یاد شده داشت.

کلیدواژه‌ها

موضوعات


  1. FAO. 2014. Food and Agriculture Organization of the United Nations, FaoStat Database, Available from http://faostat.fao.org.

    Makroo, H.A., Prabhakar, P.K., Rastogi, N.K., Srivastava, B. 2018. Characterization of mango puree based on total soluble solids and acid content: effect on physico-chemical, rheological, thermal and ohmic heating behaviour. LWT-Food Sci. Technol., https://doi.org/10.1016/j.lwt.2019.01.003.

    1. Martı´nez-Padilla, L.P., Franke, L., Juliano, P. 2017. Characterisation of the viscoelastic properties of avocado puree for process design applications. J. Biosys. Eng., 161: 62-69.
    2. Sharma, M., Kristo, E., Corredig, M., Duizer, L. 2017. Effect of hydrocolloid type on texture of pureed carrots: Rheological and sensory measures. Food Hydrocolloids, 6: 478-487.
    3. Quek, M.C., Chin, N.L., Yusof, Y.A. 2013. Modelling of rheological behaviour of soursop juice concentrates using shear rate-temperature-concentration superposition. J. Food Eng., 118: 380-386.
    4. Magerramov, M.A., Abdulagatov, A.I., Azizov, N.D., Abdulagatov, I.M. 2007. Effect of temperature, concentration, and pressure on the viscosity of pomegranate and pear juice concentrates. J. Food Eng., 80: 476-489.
    5. AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed., AOAC Press, Arlington, TX.
    6. Zamani, H., Maskooki, A.M., Tavkoolypure, H., Pakizeh, M. 2010. Studying chemo-physical properties of concentrated raisin and condesing its syrup using thes mal method in lab scale. J. Food Sci. Technol., 7: 87-98. (In Persian)
    7. Chin, N.L., Chan, S.M., Yusof, Y.A., Chuah, T.G., Talib, R.A. 2009. Modelling of rheological behaviour of pummelo juice concentrates using master-curve. J. Food Eng., 93: 134-140.
    8. ISIRI 2001. Friuts, vegetables and derived products determination of ascorbic acid (Vitamin C)-(Routine method). No. 5609. (In Persian)
    9. ISIRI 2007. Fruit juices-Test methods. No. 2685, 1-38. (In Persian)
    10. ISIRI 2004. Food additives: β-Caroten food grade cws 10 %-Specification and test methods. No. 8024, 1-32. (In Persian)
    11. Wimalasiri, D., Brkljaĉa, R., Piva, T.J., Urban, S., Huynh, T. 2017. Comparative analysis of carotenoid content in Momordica cochinchinensis (Cucurbitaceae) collected from Australia, Thailand and Vietnam. J. Food Sci. Technol., DOI 10.1007/s13197-017-2719-0.
    12. Sathiya Mala, K., Kurian, A.E. 2016. Nutritional composition and antioxidant activity of pumpkin wastes. Int. J. Pharm. Chem. Bio. Sci., 6(3): 336-344.
    13. Burits, M., Bucar, F. 2000. Antioxidant activity of nigella sativa essential oil. J. Phytotheraphy Res., 14: 323-28.
    14. Tiziani, S., Vodovotzm, Y. 2005. Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids, 19: 45-52.
    15. Dutta, D., Dutta, A., Raychaudhuri, U., Chakraborty, R. 2006. Rheological characteristics and thermal degradation kinetics of beta-carotene in pumpkin puree. J. Food Eng., 76: 538-546.

     

    1. Steffe, J. 1996. Rheological Methods in Food Process Engineering. Freeman Press, New York, USA.
    2. Tavakolipour, H., Mokhtarian, M. 2012. Neural network approaches for prediction of pistachio drying kinetics. Int. J. Food Eng, 8, Article 42.
    3. Mota, C.L., Luciano, C., Dias, A., Barroca, M.I., Guine, R.P.F. 2010. Convective drying of onion: kinetics and nutritional evaluation. J. Food and Bioprodu. Proc., 88: 115-123.
    4. Fennema, O.R. 1996. Food Chemistry, Marcel Dekker, Inc., New York, NY.

    22.‌ Ajlouni, S., Sujirapinyokul, P. 2009. Hydroxymethylfurfural dehyde and amylase contents in Australian honey. J. Food Chem., 119: 1000-1005.

    1. Urdurlu, H.S., Karadeniz, F. 2003. Effect of storage on nonenzymatic browning of apple juice concentrates. J. Food Chem., 80: 91-97.
    2. Udomkun, P., Nagle, M., Mahayothee, B., Nohr, D., Koza, A., Müller, J. 2015. Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. J. LWT-Food Sci. Technol., 60: 914-922.
    3. Shi, J., Le Maguer, M., Bryan, M. 2002. Lycopene from tomatoes, In J. Shi, G. Mazza, & M. Le Maguer (Eds.), Functional foods-biochemical and processing aspects (pp. 135-168), USA, CRC Press.
    4. Jin, Y., Yang, N., Tong, Q., Jin, Z., Xu, X. 2016. Rotary magnetic field combined with pipe fluid technique for efficient extraction of pumpkin polysaccharides. J. Innov. Food Sci. Emer. Technol., 35:103-110.
    5. Bodbodak, S., Kashaninejad, M., Hesari, J., Razavi, S.M.A. 2013. Modeling of rheological characteristics of “MalasYazdi” (Puniciagranatum L.) pomegranate Juice. J. Agric. Sci. Technol., 15: 961-971.
    6. Gratão, A.C.A., Silveira, Jr., V., Telis-Romero, J. 2007. Laminar flow of soursop juice through concentric annuli: friction factors and rheology. J. Food Eng., 78: 1343-1354.
    7. Alpaslan, M., Hayta, M. 2002. Rheological and sensory properties of pekmez (grape molasses)/tahin (sesame paste) blends. J. Food Eng., 54: 89-93.
    8. Kaya, A., Belibağlı, K.B. 2002. Rheology of solid Gazıantep Pekmez. J. Food Eng., 54: 221-226.
    9. Arslan, E., Yener, M.E., Esin, A. 2005. Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends. J. of Food Eng., 69: 167-172.
    10. Astolfi-Filho, Z., Telis, V.R.N., Oliveira, E.B.D., Coimbra, J.S.D.R., Telis-Romero, J. 2011. Rheology and fluid dynamics properties of sugarcane juice. Biochem. Eng. J., 53: 260-265.
    11. Juszczak, L., Fortuna, T. 2004. Effect of temperature and soluble solids content on the viscosity of cherry juice concentrate. Int. Agrophys., 18: 17-21.
    12. Ibarz, A., Marco, F., Pagan, J. 1993. Rheology of persimmon juices. Fruit Proc., 3: 182-187.